给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。 规则: 一位数可变换成另一个一位数: 规则的右部不能为零。 例如:n=234。有规则(k=2): 2-> 5 3-> 6 上面的整数 234 经过变换后可能产生出的整数为(包括原数): 234 534 264 564 共 4 种不同的产生数 问题: 给出一个整数 n 和 k 个规则。 求出: 经过任意次的变换(0次或多次),能产生出多少个不同整数。 仅要求输出个数。
键盘输人,格式为: n k x1 y1 x2 y2 ... ... xn yn
屏幕输出,格式为: 一个整数(满足条件的个数):
234 2 2 5 3 6
4