#3474. 树网的核 暂未评定

时间限制:1000 ms 内存限制:256 MiB 标准输入输出
题目类型:传统 评测方式:文本比较
上传者: root

题目描述

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和。

我们称d(a,b)为a,b两结点间的距离。

一点v到一条路径P的距离为该点与P上的最近的结点的距离:

d(v,P)=min{d(v,u),u为路径P上的结点}。

树网的直径:树网中最长的路径称为树网的直径。

对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即:

ECC(F)=max{d(v,F),v∈V}

任务:对于给定的树网T=(V, E,W)和非负整数s,求一个路径F,它是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。

我们称这个路径为树网T=(V,E,W)的核(Core)。

必要时,F可以退化为某个结点。

一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

输入格式

包含n行: 第1行,两个正整数n和s,中间用一个空格隔开,其中n为树网结点的个数,s为树网的核的长度的上界,设结点编号依次为1, 2, …, n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。

例如,“2 4 7”表示连接结点2与4的边的长度为7。

所给的数据都是正确的,不必检验。

输出格式

只有一个非负整数,为指定意义下的最小偏心距。

样例

样例输入

5 2
1 2 5
2 3 2
2 4 4
2 5 3

样例输出

5

数据范围与提示

BZOJ 1999